Scikit Digital Health for Accelerometry Physical Activity: Comparisons to Existing Solutions and Investigations of Age Effects in Healthy Adults

Sheraz Khan on behalf of all authors

SciKit digital health package for accelerometry-measured physical activity: comparisons to existing solutions and investigations of age effects in healthy adults

Wenyi Lin¹, F. Isik Karahanoglu¹, Charmaine Demanuele¹, Sheraz Khan¹, Xuemei Cai², Mar Santamaria², Junrui Di^{1†} and Lukas Adamowicz^{1*†}

¹Al/ML Quantitative and Digital Sciences, Global Biometrics and Data Management, Pfizer Research and Development, Pfizer Inc, Cambridge, MA, United States, ²Digital Sciences & Translational Imaging, Early Clinical Development, Pfizer Research and Development, Pfizer Inc, Cambridge, MA, United States

ADDS 2024, Pensacola, Florida, February 27, 2024

Wrist-based Physical Activity Metrics

Background

- Using body acceleration (typically wrist) to estimate frequency, duration, and intensity of physical activity
- Previous lit has focused on 4 categories of physical activity, thresholds usually defined by Metabolic Equivalent of Task (MET)
 - Easy to interpret
 - Easy to calculate
- Thresholds vary from study-to-study based on population, activities performed, etc
- More recent work has focused on non-threshold based approaches, or fragmentation of the activity categories

Physical Activity Categories

• **Sedentary**: ~<1.5 MET – sitting, lying down

- *Light*: ~1.6 3.0 MET slow walking, standing in lines
- Moderate: ~3.0 6.0 MET walking briskly, household chores
- Vigorous: ~>6.0 MET running, exercise, hard/physical chores

In-house implementation removes device as a factor

Current Actigraphy Space

- Existing solutions:
 - GeneActiv Macros
 - GGIR
 - ActiGraph
 - pyActigraphy
 - Digital Biomarker Discovery Pipeline
- In-house solution: SKDH
 - Integrated with processing pipelines
 - Full control over algorithm/processing steps
 - Device agnostic (IO for devices we use!)

Physical Activity Algorithm

Processing Steps

- Accelerometer calibration [optional]
- Wear detection [optional]
- Sleep analysis [optional]
- Physical activity analysis
 - For each day:
 - Exclude non-wear & sleep if available
 - Compute Euclidean Norm Minus One
 - Compute physical activity metrics

Validation against existing algorithms and application in healthy adults

Validation

- No "ground truth" available
- Compare SKDH implementation to existing algorithms using STRYDE¹ (sensors to record your daily exercise) dataset
- GeneActiv Macros
 - Different accel. accumulation/summary
 - Activity classification per minute
- GGIR
 - Very close implementation
 - Accel. accumulation & thresholds matched to SKDH
- Subset of physical activity metrics compared based on available metrics

Application

- Explore STRYDE study age-group differences from activity metrics
- Explore age effects in activity effects

STRYDE demographics

	Younger	Older
Ν	33	32
F/M	17/16	16/16
Age (years)	29.2±4.6	72.3±5.8

¹Czech et al. Age and environment-related differences in gait in healthy adults using wearables. *npj Digit Med.* (2020)

Definitions

Standard

- ENMO: Euclidean Norm Minus One acceleration magnitude less gravity
- Sedentary: 0-1.5 MET, ENMO < 0.05g*
- Light: *1.6-3.0 MET*, 0.05g* ≤ ENMO < 0.11g*
- Moderate: 3.0-6.0 MET, $0.11g^* \le ENMO < 0.44g^*$
- Vigorous: >6.0 MET, ENMO \geq 0.44g*
- SLPA: Sedentary & light physical activity
- MVPA: moderate & vigorous physical activity
- **Maximum acceleration**: the maximum observed acceleration in windows of *X* length
- * SKDH & GGIR, GeneActiv has its own thresholds

Non-Standard/Fragmentation

- Intensity Gradient: Slope (log-log) of decreasing time spent in higher physical activity levels (bins of 0.025g)
- Average Duration: The average duration spent at a particular intensity.
- **Transition Probability**: The likelihood to transition out of a particular activity intensity. Math works out to be the inverse of the average duration

Intensity Gradient Examples

SKDH Validation Results: Generally good to excellent agreement with existing algorithms.

Table 1: Comparisons of mean activity metrics across days between SKDH and references (GGIR / GENEActiv Macros) for selected activity metrics.

Package	Metrics	ICC (95% CI)	Mean Diff. (p-value*)	Corr. (p-value)
GGIR	Intensity Gradient	$0.941 \ (0.048, 0.986)$	-0.083 (<0.001)	0.989 (<0.001)
	MVPA Time	$0.997 \ (0.991, 0.999)$	$1.900 \ (< 0.001)$	$0.998 \ (< 0.001)$
	Sedentary Time	$0.550 \ (0.356, 0.699)$	-2.299(0.8162)	0.547 (< 0.001)
	Light Time	$0.995 \ (0.991, 0.997)$	$0.968\ (0.0315)$	0.995~(<0.001)
	Moderate Time	$0.997 \ (0.996, 0.998)$	$0.748\ (0.0472)$	$0.998 \ (< 0.001)$
	Vigorous Time	$1.000 \ (1.000, 1.000)$	-0.001 (0.9393)	$1.000 \ (< 0.001)$
GENEActiv Macros	Sedentary Time	0.530 (-0.056,0.793)	-76.517 (<0.001)	0.733 (<0.001)
	Light Time	0.469 (-0.032, 0.813)	$-45.040 \ (<0.001)$	$0.957 \ (< 0.001)$
	Moderate Time	0.618 (-0.067, 0.880)	$48.954 \ (<0.001)$	$0.947 \ (< 0.001)$
	Vigorous Time	$0.697 \ (0.452, 0.828)$	3.233~(<0.001)	0.812 (< 0.001)
	Max. Acc. 15min	_t	_†	0.967 (< 0.001)

* *p*-values were computed from paired t-tests.

[†] Incompatible units: the acceleration summaries are different in units therefore the ICC and mean difference are not appropriate to be calculated;

Max. Acc: Maximum acceleration

Key Points

- Majority correlations are high
- GGIR ICC values are mostly high
- GENEActiv ICC values are moderate/good
 - Driven by different accel. Accumulation & thresholds
- Poor Sedentary time likely driven by different sleep calculations

Age effects are observed on select physical activity metrics

Key Points

Table 2: The Association Between Age and SKDH-Derived Physical Activity Metrics

- Time spent in moderate and MVPA showed strongly significant age group differences, vigorous showed significance
- Time spent in sedentary and light activity levels showed no significant age group differences
- Novel metrics such as Intensity Gradient and transition probabilities between activity levels showed showed significant age group differences

	fizer
--	-------

	Group Mean (SD)				
	Younger	Older	Cohen's $d $	<i>p</i> -value (mean)	p-value (slope)
SLPA Trans. Prob.	$0.04\ (0.01)$	$0.02 \ (0.01)$	1.68	< 0.001	0.409
Intensity Gradient	-2.32(0.18)	-2.58(0.23)	1.27	< 0.001	0.017
MVPA Time [min]	$98.37\ (36.56)$	57.63(30.88)	1.22	< 0.001	0.130
Moderate Time [min]	$93.08\ (35.76)$	55.58(28.96)	1.17	< 0.001	0.167
Max. Acceleration 6min [g]	0.32(0.14)	$0.20 \ (0.09)$	1.04	< 0.001	0.185
IG Intercept	$13.48\ (0.79)$	$14.25\ (0.76)$	1.00	< 0.001	0.153
Max. Acceleration 15min [g]	0.24(0.11)	$0.16\ (0.08)$	0.87	0.001	0.076
Vigorous Time [min]	5.29(7.61)	2.05(3.26)	0.56	0.030	0.332
MVPA Trans. Prob.	0.43(0.11)	0.51 (0.20)	0.54	0.038	< 0.001
Sedentary Time [min]	708.40 (82.29)	732.94(86.79)	0.29	0.247	0.095
Light Time [min]	$118.27\ (25.36)$	118.89 (41.09)	0.02	0.942	0.180

Variation in physical activity metrics with age differs between younger and older cohorts

Key Points

- Age has different effects for younger and older groups
- Shown most prominently in
 - Intensity Gradient
 - Many SLPA/MVPA fragmentation endpoints such as transition probabilities

Group Mean (SD) Younger Older |Cohen's d| p-value (mean) *p*-value (slope) SLPA Trans. Prob. 0.02(0.01)0.04(0.01)1.68< 0.0010.409Intensity Gradient -2.58(0.23)1.27< 0.001-2.32(0.18)0.017MVPA Time [min] 98.37(36.56)57.63(30.88)1.22< 0.0010.130Moderate Time [min] 93.08 (35.76) 55.58(28.96)1.17< 0.0010.167Max. Acceleration 6min [g] 0.32(0.14)0.20(0.09)1.04< 0.0010.185IG Intercept 13.48(0.79)14.25(0.76)1.00< 0.0010.153Max. Acceleration 15min [g] 0.24(0.11)0.16(0.08)0.870.0010.076Vigorous Time [min] 2.05(3.26)0.3325.29(7.61)0.560.030MVPA Trans. Prob. 0.43(0.11)0.51(0.20)0.540.038< 0.001Sedentary Time [min] 708.40 (82.29) 732.94 (86.79) 0.290.2470.095Light Time [min] 118.27(25.36)118.89(41.09)0.020.9420.180

Table 2: The Association Between Age and SKDH-Derived Physical Activity Metrics

Probability to transition from Sedentary/Light PA zone is significantly different between age groups

Key Points

- Clear group separation/group difference
- Slopes relatively similar (p-value=0.409)

Probability to transition from Moderate-to-Vigorous PA zone is significantly different between age groups

Key Points

- Still significant age difference, if not as strong
- Highly significant difference in age effects between younger and older group (p-value<0.001)

Intensity gradient shows age effects, and age-related decline in the older cohort

Key Points

- Clear age separation/group difference
- Slope of older group is significantly steeper (p-value=0.017), indicating faster decline

Intensity Gradient: Change in time spent in higher physical activity levels

Future Avenues for Work

- Include pediatric population studies
- Include patient populations
- Healthy/patient comparisons, especially with fragmentation endpoints
- Additional non-threshold based metrics

Key Take-aways

- SKDH computes comparable activity metrics to existing packages providing a **device agnostic solution** to extract activity parameters from wrist sensors
- Select SKDH activity metrics such as time spent in MVPA and moderate activity as well as transition from different activity levels differ significantly between younger/older healthy adults
- Select activity metrics such as the change in time spent in higher physical activity levels vary differently with age in the younger and older groups

Thank You

takes a VILAGE

Frontiers | Frontiers in Digital Health

TYPE Original Research PUBLISHED 27 November 2023 DOI 10.3389/fdgth.2023.1321086

Thanks to whole DSTI team

Check for updates

OPEN ACCESS EDITED BY Shuhan He Harvard Medical School, United States REVIEWED BY Abdel Badih Ariss Harvard University, United States Louise Corscadden Independent Researcher, Illinois, United States *CORRESPONDENCE Lukas Adamowicz 🗉 lukas.adamowicz@pfizer.com ¹These authors have contributed equally to this work and share senior authorship RECEIVED 13 October 2023 ACCEPTED 07 November 2023 PUBLISHED 27 November 2023

SciKit digital health package for accelerometry-measured physical activity: comparisons to existing solutions and investigations of age effects in healthy adults

Wenyi Lin¹, F. Isik Karahanoglu¹, Charmaine Demanuele¹, Sheraz Khan¹, Xuemei Cai², Mar Santamaria², Junrui Di¹¹ and Lukas Adamowicz^{1*†}

'AI/ML Quantitative and Digital Sciences, Global Biometrics and Data Management, Prizer Research and Development, Pfizer Inc, Cambridge, MA, United States, 'Digital Sciences & Translational Imaging, Early Clinical Development, Pfizer Research and Development, Pfizer Inc, Cambridge, MA, United States

