Patient-Centric Measures of Free-living Gait in ALS using Digital Health Technologies

Rakesh Pilkar, PhD

Senior Data Scientist

ActiGraph

ActiGraph

Introduction

ALS

• A progressive neurodegenerative disease that affects nerve cells in the brain and spinal cord

• Loss of **speech, mobility, and respiratory** functions

ALS Drug Development

Actigraphy

ADDS 202

- **Limited success and patient satisfaction** with respect to disease progression and symptomatic relief*.
- Lack of objective, sensitive, and patient-centric measures
- An urgent need for the clinical outcome measures that can increase **the probability of success** of clinical trials in ALS

Sanofi stumbles in HIMALAYA trial, chalking up phase 2 ALS fail in another blow to Denali alliance

By Nick Paul Taylor • Feb 20, 2024 4:40am

Sanofi Denali Therapeutics amyotrophic lateral sclerosis failed trials

After 24 weeks, Sanofi assessed the change from baseline on an ALS severity scale, ALSFRS-R.

- Hip-worn accelerometry outcomes were able to capture the functional decline (van Eijk, et al., 2019; Holdom et al., 2023)
- Wrist-worn activity measures were related with future decline in fine-motor function (Holdom et al., 2023)
- Functional mobility walking is meaningful
- Wrist-derived gait measures can increase compliance, adherence and reduce clinical trial costs

*The Voice of the Patient, ALS drug dev survey, the ALS association, Oct, 2019

- 1 Can wrist-based DHT measures of gait **distinguish between ALS** and the controls?
- 2 Can wrist-based DHT measures of gait track the ALS progression?
- 3 How to the wrist-based DHT measures of gait correlate with the clinical measure?

Study overview

Natural History Study Assessing functional decline in ALS using actigraphy PI: Frederik Steyn, PhD

Objective – To observe the progression of the disease, and potentially differentiate patient subtypes.

Procedures

- GT9X on their non-dominant wrist (accelerometer)
- Continuous recording for 7-8 days.
- 104 ALS and 54 controls (since 2015)
- Multiple collection periods (sessions)
- Sessions are separated by 3-4 months

Algorithm and measures

Q1: Can wrist-based DHT measures distinguish between ALS and the controls?

Session 0, Days 2-6, Controls = 58, ALS = 104

* p < 0.05

Q2: Can DHT-derived measures track the ALS progression?

Session 0-3, Days 2-6, N = 34 ALS, Each session separated by 3-4 months

Q3: How to the DHT measures correlate with the clinical measure?

ALS Functional Rating Scale – revised (ALSFRS-R)

ALS Functional Rating Scale – Revised

_____ Total Score

1: SPEECH 4 Normal speech process 3 Detectable speech disturbance 2 Intelligible with repeating 1 Speech combined with non-vocal communication 0 Loss of useful speech

2: SALIVATION

4 Normal 3 Slight but definite excess of saliva in mouth; may have nighttime drooling. 2 Moderately excessive saliva; may have minimal drooling (during the day) 1 Marked excess of saliva with some drooling 0 Marked drooling; requires constant tissue or handkerchief

3: SWALLOWING

4 Normal eating habits 3 Early eating problems – occasional choking 2 Dietary consistency changes 1 Needs supplement tube feeding 0 NPO (exclusively parenteral or enteral feeding)

4: HANDWRITING

4 Normal 3 Slow or sloppy: all words are legible 2 Not all words are legible 1 Able to grip pen, but unable to write 0 Unable to grip pen

5a: CUTTING FOOD AND HANDLING UTENSILS Patients <u>without</u> gastrostomy: Use 5b if >50% is through g-tube 4 Normal

a roumant 3 Somewhat slow and clumsy, but no help needed 2 Can cut most foods (>50%), although slow and clumsy; some help needed 1 Food must be cut by someone, but can still feed slowly 0 Needs to be fed

Item Siz-CUTTING FOOD AND HANDLING UTENSILS Patients with astrostomy: 56 option is used if the patient has a patrostomy and only if is is the primary method (more than 50%) of eating. 4 Normal 3 Clumsy, but able to perform all manipulations indigenedimity 1 Provides minimal assistance to caregiver 0 Unable to perform any societ of task.

6: DRESSING AND HYGIENE 4 Normal function 3 Independent and complete self-care with effort or decreased efficiency 2 Intermittent assistance or substitute methods 1 Needs attendant for celf-care

2 Intermittent assistance or substitute methods 1 Needs attendant for self-care 0 Total dependence

7: TURNING IN BED AND ADJUSTING BED CLOTHES

4 Normal function 3 Somewhat slow and clumsy, but no help needed 2 Can turn alone, or adjust sheets, but with great difficulty 1 Can initiate, but not turn or adjust sheets alone 0 Helpless

8: WALKING 4 Normal 3 Early ambulation difficulties 2 Walks with assistance 1 Non-ambulatory functional movement 0 No purposeful leg movement

9: CLIMBING STAIRS 4 Normal 3 Slow 2 Mild unsteadiness or fatigue 1 Needs assistance 0 Cannot do

10: DIFFICULTY BREATHING

4 None 3 Occurs with one or more of the following: eating, bathing, dressing 1 Occurs at rest: difficulty breathing when either sitting or lying 0 Significant difficulty: considering using mechanical respiratory support

11: DIFFICULTY BREATHING WHEN LYING FLAT 4 None 3 Some difficulty sleeping at night due to shortness

of breath, does not routinely use more than two pillows 2 Needs extra pillows in order to sleep (more than two)

1 Can only sleep sitting up 0 Unable to sleep without mechanical assistance

Item 12: RESPIRATORY INSUFFICIENCY 4 None

3 Intermittent use of BiPAP 2 Continuous use of BiPAP during the night 1 Continuous use of BiPAP during day & night 0 Invasive mechanical ventilation by intubation or tracheostomy

Each item: 0 to 4 (normal), max score: 48

High score – higher functional status

Functional areas:

٠

- Speech
- Salivation
- Swallowing
- Handwriting
- Cutting food and handling utensils
- Dressing and hygiene
- Turning in bed and adjusting bed clothes
- Walking, climbing stairs
- Breathing, respiratory

ADDS 2024

ActiGraph

Q3: How to the DHT measures correlate with the clinical measure?

ADDS 2024 ActiGraph.

Q3: How to the DHT measures correlate with the clinical measure?

Gait bouts

Removing the 'noise' in the data?

			(Bout-le	evel metrics]	
Subject ID	Date	Bout ID	Bout Duration (sec)	Steps	Cadence*	Speed*	Distance
id1	date1	0			*50 th (media	*50 th (median) and 95 th percentiles are also provided	
id1	date1	1			percentile		

Bout - a continuous walking segment detected by the algorithm

ADDS 2024 ActiGraph.

Summary

L	Can DHT-derived measures distinguish between the ALS and the controls?	Yes: step counts, distance, speed (mean, median), cadence (mean and median)
2	Can DHT-derived measures track the disease progression?	Yes: step counts, distance, speed (mean, median), cadence (mean and median) 95 th perc of speed, cadence <u>only at session 3</u>
3	How to the DHT-derived measures correlate with clinical measures?	All measures are significantly correlated with ALS- FRS Step count, distance (high effect size) Gait speed (medium effect size) Cadence measures (low effect size)

Next steps

Statistical analyses

- How reliable the outcome measures are based on the variability in the data ?
- How much data is enough for getting the desired measures?
- How should we aggregate the data to improve the effect sizes?

Questions?

ADDS 2024

Thank You for Your Time.

rakesh.pilkar@theactigraph.com

