Using Machine Learning and a Wrist-Worn IMU to Detect and Quantify Daily Living Gait in Older Adults and Patients with Neurological Disease

Pensacola, Florida February 27, 2024 ADDS 2024

Prof. Jeffrey M. Hausdorff Center for the Study of Movement, Cognition, and Mobility, Neurological institute, Tel Aviv Sourasky Medical Center Sagol School of Neuroscience and Faculty of Medicine, Tel Aviv University Rush Altheimer's Disease Center and Department of Orthopaedic Surgery, Rush University Medical Center E-mail: jeffh@ttvmc.gov.il

Why is physical activity a super-hero of aging?

Physical activity is a protective factor for:

- OsteoporosisSarcopenia
- Cardiovascular disease
- Stroke
- Diabetes
- Falls
- Mobility disability
 Neurological disea
- Neurological diseaseCognitive decline
- Dementia

	Blocks of covariates	Variance of physical activity decline	
		rate explained by blocks of covariates	
	Demographic	16% (11%-22%)	
1	Waist sensor-derived mobility metrics - Walking	21% (16%-28%)	
1.11	Waist sensor-derived mobility metrics - Timed Up & GO	22% (17%-30%)	
	Waist sensor-derived mobility metrics - Standing	3% (1%-8%)	
. 1	Wrist sensor-derived other covariates	10% (6%-16%)	
0.69	Vascular factors	4% (2%-9%)	
	Cognition	9% (5%-15%)	
	Psychosocial	6% (3%-12%)	
	Pulmonary function	5% (2%-10%)	
	Self-report activities & disabilities	18% (13%-26%)	
	Conventional motor function	24% (18%-30%)	
	Blood work and other lab tests	8% (5%-14%)	
	When covariates from all 12 blocks were inclu	ded together in a single	
No. 1			

Gait speed	predicts	injurious falls	

	Model 1	Model 2	Model 3	Model 4
All Population (n = 16 445)				
Linear association (each SD decrease)	0.998 (0.997, 0.998)	0.998 (0.997, 0.998)	0.998 (0.997, 0.999)	0.998 (0.997, 0.999)
Gait speed (m/s) quintiles*				
High (Q5)	Ref	Ref	Ref	Ref
Medium (Q2-Q4)	1.16 (1.00, 1.34)	1.15 (1.00, 1.34)	1.18 (1.01, 1.37)	1.18 (1.01, 1.37)
Low Q1	1.55 (1.31, 1.83)	1.50 (1.27, 1.78)	1.48 (1.24, 1.77)	1.48 (1.24, 1.77)

Data presented as hazard ratio [HR, 95% confidence interval [CI]). Model 1: age and gender. Model 2: age, gender, physical activity, BMI and self-reported health status. Model 3: age, gender, physical activity, BMI, SF12 (state of health), chronic kidney disease, and polypharmacy. Model 4: age, gender, physical activity, BMI, SF12 (state of health), chronic kidney disease, polypharmacy and aspirin (100mg).

T Pham et al., PloS One, 2023

Potential adv	vantages of 2	24/7 monito	oring of gait
		Supervised assessment	Unsupervised assessment
	Clinometric properties (e.g., test-retest reliability)	Established	In progress
	Setting	Artificial	Ecological
	Number of assessments	1 Snapshot	1000's
Laboratory	Sensitive to fatigue, affect and mood	Minimally	Yes
	White coat (Hawthorne) effect	Yes	Minimally
A CONTRACTOR	Patient centred	Not necessarily	Yes
	Real-world challenges	Somewhat	Yes
	Real-time feedback for therapy	Questionable	Yes
	Interpretation of results	Easy	More challenging
Real-world	Environmental influences	Minimal	Yes
		-	

Relationship between lab and 24/7 metrics in MCI: Mobility function ≠ Mobility capacity					
Larger effect sizes for everyday walking					
	Controls	MCI	P-value	Cohen's d	
Gait speed (m/sec)	1.06±0.24	0.90±0.29	0.017	0.601	
Stride Length (m)	1.16±0.20	1.02±0.22	0.004	0.666	
<u>م</u>					
SD of stride regularity	0.17±0.01	0.13±0.04	<0.001	1.372	
SD of peak amplitude [g^2/Hz]	0.18±0.01	0.12±0.05	<0.001	1.664	
				Hausdorff	

Gait De Learning	etection f g Method Peo	rom a Wi ls: A Daily ple with	rist-Worn / Living St Parkinsor	Sensor Us udy in Old i's Disease	ing Machine ler Adults and
	Accuracy (%)	Precision (%)	Sensitivity (%)	Specificity (%)	
FB AR-iHMM DCNN	71.0 73.2 96.0	36.3 40.0 90.9	77.8 94.6 83.8	69.5 68.4 98.4	
New Anomaly Detection	99.4	78.1	44.6	92.5 99.4	
	Accuracy (%)	Precision (%)	Sensitivity (%)	Specificity (%)	Precision is also referred to as positive predictive value (PPV
DAs					
FB	76.2 (2.4)	15.4 (5.8)	59.8 (6.3)	77.3 (2.5)	
AR-IHMM	85.2 (8.1)	27.3 (8.6)	78.7 (17.9)	85 (9.43)	
DONN	90.2 (4.2)	61.4 (3.4)	64.8 (9.8)	97.6 (4.9)	
BIGIT-LSTM	81.7 (6.6)	38.8 (11.9)	81.7 (5.7)	81.8 (7.4)	
The second second second second second	76.2 (0.5)	29.9 (0.5)	nv.n (0.1)	xers (0.9)	
NO.			87 4 (18 c)	177 A 178 TO	
PD EB	7761570	15.7 / 11.31			
PD FB	77.6 (5.7)	15.2 (11.3)	50 (23.3)	951 (5.0)	
PD FB AR-HMM DCNN	77.6 (5.7) 92.6 (4.7) 91.7 (7.4)	15.2 (11.3) 38.1 (24.0) 40.9 (6.0)	50 (23.3) 72.9 (7.4)	95.1 (5.0) 92.9 (9.2)	
PD FB AR-aMM DCNN Bide-15TM	77.6 (5.7) 92.6 (4.7) 91.7 (7.4) 76.6 (4.6)	15.2 (11.3) 38.1 (24.0) 40.9 (6.0) 38.3 (7.1)	50 (23.3) 72.9 (7.4) 88.6 (10.9)	95.1 (5.0) 95.1 (5.0) 92.9 (9.2) 76.5 (6.1)	

Limitations and Challenges of these Machine Learning Approaches

- A supervised model requires reliable labels
- Labels derived from the lower-back sensor are not perfect
- In general, ground truth labels are scarce in daily living recordings, especially in clinical populations
- Hence, the potential of "foundation" and self-supervised models

