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Motivation

● Walking → most accessible form of physical activity

● Walking features → likely predictors of physical health

● Feature extraction from hierarchical functional data (preprocessed
accelerometry data)⇒ walking spectra nested within participants

– Structured functional principal component analysis (SFPCA) (Shou et al.,
2015)

Results
⇒ Easily interpretable walking features on a subject-specific level

⇒ Associations between walking features and several health indicators
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Data

● Sample: N = 48 subjects enrolled in the Developmental Epidemiologic
Cohort Study (DECOS) at the University of Pittsburgh (Lange-Maia et
al., 2015)
● Age: between 70.0 and 90.0 (median = 78.0, sd = 5.7),
● BMI: between 20.5 and 37.9 (median = 25.9, sd = 3.9)

● Accelerometry Data:
● Different activities in-the-lab and free-living data collected for 7 days
● Device location:

● Left wrist, right wrist and hip: ActiGraph GT3X+ (80hz)
● Thigh: activPAL 3 (20hz)
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Data pre-processing

● Described in detail in Urbanek et al. (2018), Fadel et al. (2020)

● Briefly:
● 400m fast-paced walk data extracted from in-the-lab signal
● Shot-time Fast Fourier Transform (SFFT) applied to 10-second intervals

(46 intervals)
● Spectra aligned in the, so called, order domain
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Data pre-processing
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Statistical Methods – Overview

(1) Structured functional principal component analysis (SFPCA)
(Shou et al., 2015)

● Dimension reduction on two levels⇒ feature extraction on subject-specific
level

(2) Principal component regressions (PCRs)

● OLS regression⇒ subject-specific level features (≈ principal scores)
related to age and physical health indicators
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SFPCA – Model

Yij(t) = µ(t) + subjecti(t) + spectrumij(t) + εij(t),

i ∈ {1, . . . ,48}
(subjects)

, j ∈ {1, . . . ,46}
(spectra)

, t ∈ {0.30,0.31, . . . ,5.75}
(order domain)

εij(t) ∼ N (0, σ2) , i.i.d.

● Yij(t) = acceleration magnitude for order domain point t on a spectrum
curve j nested within participant i

● subjecti(t) = latent subject-specific process,
● spectrumij(t) = latent subject-spectrum specific process
● order domain axis sampled in equal steps of 0.01⇒ grid length p = 546

7 / 22



Covariance separation by SFPCA

Cov (Yij(s), Yij(t)) = Cov (subjecti(s),subjecti(t)) +
+ Cov (spectrumij(s),spectrumij(t))

● BUT subject and spectrum are latent
⇒ Estimate KX and KU using design-specific matrices GX and GU

(“implicit” level separation → w/o estimating level data explicitly)

⇒ K̂Y = K̂X + K̂U = YGXY
′ + YGUY

′
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Feature extraction
Level-specific eigendecomposition of covariance → feature extraction

K̂X(s, t) =
d∗sub

∑
k=1

λ̂subk φ̂subk (s)φ̂sub
′

k (t),

K̂U(s, t) =
d∗spec

∑
`=1

λ̂spec` φ̂spec` (s)φ̂spec
′

` (t)

φ̂sub, φ̂spec: level-specific eigenfunctions (“walking features”)
λ̂sub, λ̂spec: level-specific eigenvalues

Scores subject-specific only

ξsubk = ∫ subject(t)φ̂subk (t)dt

⇒ Subject-specific level scores as BLUP in two-level framework (e.g.
Crainiceanu et al., 2009)
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Subject-specific level features

● order domain 1 = cadence
● order domain 2 = cadence multiple 2

. . .
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Subject-specific level features

● Participant-specific walking pattern approximated through

Ỹ
sub
i (t) =

5

∑
k=1

φ̂subk (t)ξ̂subik (Karhunen-Loève)

where φ̂subk = features and ξ̂subik = scores
● Next: analyze pronounced peaks and valleys in φ̂subk
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Interpretation example
FPC1, % explained variance = 59.67

FPC2, % explained variance = 10.82

● Subject i with higher score ξsub1i > 0
has a higher acceleration
magnitude at the cadence

● FPC1 captures most of
heterogeneity b/w participants →
participants vary most strongly by
acceleration magnitude at cadence

● Subject i with higher score ξsub2i > 0
has a lower acceleration magnitude
at the cadence and a higher
acceleration magnitude at cadence
multiples 2.5 and 3.5
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Outcome regressions – Algorithm

(1) Outcome regression: Regress Z (e.g. BMI) on score matrix ξ̂
sub

, and
other regressors R.

(2) Subset selection: Select best model via an information criterion (R is
“forced” into the model).

(3) Interpretation: Interpret significant associations.
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Outcome regressions

E[Zi] = β0 +
5

∑
k=1

ξ̂subik βk + Ageiγ1 + Maleiγ2

Z ∈ {Age,BMI,BPM,Avg cadence,PFS mental,PFS physical,MAP,SPPB}

● BPM = beats per minute (heart rate)
● PFS = Pittsburgh Fatigability Scale
● MAP = Mean Arterial Pressure [(SBP + 2*DBP)/3]
● SPPB = Short Physical Performance Battery

Note: subset regressions consider subset of [ξ̂subi1 , . . . , ξ̂subi5 ]
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Results – Final models

Coeff/Z Age BMI BPM Avg cad PFS ment PFS phys MAP SPPB
Const 78.413 53.007 88.948 1.769 12.735 10.000 126.366 16.764

Age -0.342 -0.311 0.003 -0.063 0.080 -0.442 -0.078
(0.003) (0.298) (0.468) (0.817) (0.709) (0.165) (0.118)

Male 1.065 0.998 -4.407 -0.067 1.034 -1.383 -6.278 -0.447
(0.464) (0.368) (0.124) (0.163) (0.701) (0.506) (0.074) (0.343)

sc1 -5.691 -3.747 -3.509 0.194 -5.054 -3.654 1.234
(60%) (<0.001) (0.002) (0.272) (<0.001) (0.087) (0.113) (0.023)
sc2 6.915 16.696
(11%) (0.017) (0.035)
sc3 8.812 -7.349 -0.252
(7%) (0.026) (0.021) (0.063)
sc4 12.585
(5%) (0.007)
sc5
(4%)

R2
adj, b -0.023 0.048 0.046 0.077 -0.030 0.048 0.038 0.192

R2
adj, f 0.474 0.324 0.051 0.325 0.027 0.088 0.116 0.272

I 45 45 45 45 39 40 45 45
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Interpretation – Feature 1

Z β̂1

Age -5.691
BMI -3.747
Avg cad 0.194
SPPB 1.234

higher ξ̂subi1 associated with
● younger age
● lower BMI
● faster average cadence
● higher SPPB scores

Note that φ̂sub1 ≈ 0.13⇒ higher ξ̂subi1
also associated with higher acceler-
ation magnitude at cadence

⇒ Individuals with higher acc.
magnitude at cadence
predicted to (i) be younger,
(ii) have a lower BMI, (iii)
make more steps per second,
and (iv) have a better
physical function
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Interpretation – Feature 2

Z β̂2

Age 6.92
MAP 16.70

Higher ξ̂subi2 associated with
● older age
● higher MAP

Note that φ̂sub2 ≈ −0.125 ⇒ higher
ξ̂subi2 associated with lower acc.
magnitude at cadence;
φ̂sub2 ≈ 0.1 ⇒ higher ξ̂subi2 associ-
ated with higher acc. magnitude at
cadence multiples 2.5 and 3.5

⇒ Individuals with lower acc.
magnitude at cadence and
higher acc. magnitude at
cadence multiples 2.5 and 3.5
predicted to (i) be older, (ii)
have a higher MAP
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Interpretation – Feature 3

Z β̂3

Age 8.81
BMI -7.35

Higher ξ̂subi3 associated with
● older age
● lower BMI

Note that φ̂sub1 ≈ −0.13 ⇒ higher
ξ̂subi3 associated with lower acc.
magnitude at cadence multiple 2.5

⇒ Individuals with lower acc.
magnitude at cadence
multiple 2.5 predicted to (i) be
older, and (ii) have a lower
BMI
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Interpretation – Feature 4

Z β̂4

Age 12.59
Higher ξ̂subi4 associated with

● older age

Note that φ̂sub1 ≈ −0.185 ⇒ higher
ξ̂subi4 associated with lower acc.
magnitude at cadence multiple 1.5

⇒ Individuals with lower acc.
magnitude at cadence
multiple 1.5 predicted to be
older
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Discussion

● Processed accelerometry data ≈ functional data → curves provide
time-ordered intra-walk information

– Cadence: alignment of curves; proxy-indicator for walking intensity (Tudor-Locke et
al., 2018)

– Quantification of walking asymmetry: more energy at high frequencies →
unstable walk

● Subject-specific level features significantly related to several indicators of
physical health
⇒ Individual walking pattern may shed light on subject’s subclinical disease status
⇒ Potentially: 400m corridor walk performance for older adults → prognostic factor

for health outcomes
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